Distillers Improve Quality While Reducing Operating Costs

Distillers Improve Quality While Reducing Operating Costs with SUPRApak™ Technology

Overview

 

Filtration of spirits can be a challenging task. It is essential to remove contaminants that may cause turbidity while retaining the quality enhancing components in the product. Filter sheets are the traditional method for achieving this delicate balance. Sheets are comprised of a unique matrix of materials that provide an excellent combination of adsorption and depth filtration, making them an ideal solution for turbidity reduction and haze removal in spirits. Filter sheets are available in multiple grades to cover a wide range of applications from filtration of cordials to chill haze reduction in brown spirits to particle removal in white spirits. Additionally many plate and frame filter units have the flexibility to add or remove sheets to suit the batch size, flow rate or the specific product to be filtered.

 

While effective, filter sheets in a plate and frame assembly do have disadvantages. With multiple flat sheets configured in parallel, installation and assembly is labor intensive and with sealing dependant on the operator and equipment maintenance, edge leakage is common resulting in product loss and unsanitary conditions. Additionally, the installation is an open system resulting in alcohol exposure to the surrounding environment. In many regions a ventilation system is required to minimize the release of volatile organic compounds.

 

The Challenge

In recent years, with mergers and acquisitions and globalization of brands, distilleries are under increasing pressure to improve quality and reduce costs while satisfying more stringent regulatory requirements. They require filtration techniques that are easy to use and require less labor and maintenance while providing similar filtration characteristics and flexibility as sheet filters. Additionally with aging equipment and expansion projects on the rise, new equipment must address limited floor space availability. Finally, documentation or certification of the filtration equipment is critical to ensure compliance to local regulations and HACCP programs.

 

The Solution

To overcome some of the drawbacks associated with traditional sheet filters, Pall developed SUPRApak technology. SUPRApak modules are constructed using the same depth filter media as the classical filter sheets, however, the media is configured into a modular format that fits easily into an enclosed housing for safe, simple and hygienic operation. Unlike typical lenticular modules, SUPRApak modules have an entirely different design and flow configuration that maximizes the surface, depth and adsorption mechanisms of filtration that normally occur in sheet media.

 

A module consists of filter sheet material wrapped around a central permeable core with external straps that attach the sheet material to the core. The sheet material is punched with an intricate pattern of feed and filtrate channels, which direct the fluid flow through the module. The unfiltered fluid enters the module from the outside through feed channels. The driving force of differential pressure pushes the fluid flow through the sheet media in a direction parallel to the filter sheet surface toward the filtrate channels. The filtrate channels then carry the fluid toward the center core where it exits the module. 

 

Application Bulletin SUPRApak’s unique flow configuration typically results in higher throughput performance and improved filtrate quality when compared to flat sheets in a plate and frame format. A whisky distillery was recently having problems with high chill haze resulting in the need to double sheet filter each batch. With SUPRApak technology, the customer was able to meet the requirements with a single filtration pass. As a result they significantly reduced their annual filter spend by 27% and cut their batch time from 16 hours to 8 hours.

 

When combined with a 75% reduction in labor for blow down and change-out and the elimination of drip losses, the housing payback was a short 6 months. Moreover, by reducing the batch time they now have the capability to increase their total capacity. The high packing density and modular design of the SUPRApak modules allow for extremely high surface area in a compact footprint. Up to six modules can be stacked together in a single housing for up to 85% reduction in space when compared to the horizontal chassis design of most flat sheet filter assemblies. 

 

Additionally, with minimal components and replacement parts, when comparing equal filter area, the simple SUPRApak housing set up carries a significantly lower initial investment cost. For example, a tequila packager using 2 SUPRApak housings to meet their flow requirements, was able to reduce their capital spend by 60% compared to their budget for a new plate and frame unit. In addition to the drip loss savings and reduced release of volatile organic compounds, they will now also have extra floor space for future expansion.

 

The Benefits

With SUPRApak modules, distilleries can achieve cost effective and quality enhancing filtration for applications from turbidity reduction to chill haze removal. When using these modules to replace traditional flat sheet filters, distillers can realize the following benefits:

 

 

  • Increased process security due to the enclosed design
  • Elimination of drip losses for increased product yield
  • Improved filtrate quality when directly compared to flat sheet filtration
  • Reduced operating costs with a short return on investment (e.g. 6 months)
  • Compact filter design for up to 85% reduced floor space requirement
  • Up to 60% reduced capital investment compared to a new plate and frame assembly Up to 75% reduced labor for blow-down and change-out
  • Decreased downtime due to the high packing density, unique flow configuration and short change-out times
  • Minimal spare parts and maintenance

 

About Pall Corporation

Pall Corporation is the largest and most diverse filtration, separation, and purification company in the world. Pall serves the food and beverage industries with advanced membrane filtration technology and systems engineered for reliability and cost-effectiveness. Easy to install and simple to use, our systems satisfy a wide range of filtration requirements. Our Total Fluid Management SM (TFM) approach offers customers solutions to address the needs of an entire process, encompassing filtration products, services, systems and training. 

TFF Technology Increases Yield and Reduces Waste Streams

Up to 80% of the extract contained in the surplus yeast that collects at the bottom of tanks after fermentation and maturation can now be recovered rather than disposed of. Beer can be recovered and blended back into the brewing process at a ratio of up to 5% without negatively influencing the beer quality, increasing the yield and reducing the total beer volume needing to be produced. This represents a lower CO2 footprint, reduced water usage, and a lowering of production costs, plus the minimized waste stream reduces disposal costs and ensures a lower level of BOD’s and COD’s are returned back into the environment.
Up to 80% of the extract contained in the surplus yeast that collects at the bottom of tanks after fermentation and maturation can now be recovered rather than disposed of. Beer can be recovered and blended back into the brewing process at a ratio of up to 5% without negatively influencing the beer quality, increasing the yield and reducing the total beer volume needing to be produced. This represents a lower CO2 footprint, reduced water usage, and a lowering of production costs, plus the minimized waste stream reduces disposal costs and ensures a lower level of BOD’s and COD’s are returned back into the environment.
詳細を見る

Craft Brewery Preserves Image and Limits Losses

Although beer is restrictive to bacterial growth due to its low pH, ethanol concentration, and low oxygen content, the presence of certain beer spoilage bacteria including Lactobacillus, Pediococcus, Pectinatus, and Megasphaera can generate off-flavors, turbidity and acidity. Such quality deficiencies render the product unacceptable and often result in high economic losses and negative brand image. Throughout the production process, undesirable microbial contamination must be prevented to achieve the required final beer quality. Such contamination may originate from ingredients (including yeast), air and water utilities coming into contact with the product, and the environment.
Although beer is restrictive to bacterial growth due to its low pH, ethanol concentration, and low oxygen content, the presence of certain beer spoilage bacteria including Lactobacillus, Pediococcus, Pectinatus, and Megasphaera can generate off-flavors, turbidity and acidity. Such quality deficiencies render the product unacceptable and often result in high economic losses and negative brand image. Throughout the production process, undesirable microbial contamination must be prevented to achieve the required final beer quality. Such contamination may originate from ingredients (including yeast), air and water utilities coming into contact with the product, and the environment.
詳細を見る

Pall Aria™ System Rescues Bottled Spring Water Producer from Plant Closure

Spring water is a valuable natural resource, which requires good purification treatment before appearing on grocery store shelves as high purity, visually pleasing bottled product. Filtration is a key process step required to achieve consistently high product quality. The costs associated with filtration may be substantial, depending on source water quality. Disposable filters are a technically sound solution but their use may become economically unsustainable in the face of difficult or variable quality source water.
Spring water is a valuable natural resource, which requires good purification treatment before appearing on grocery store shelves as high purity, visually pleasing bottled product. Filtration is a key process step required to achieve consistently high product quality. The costs associated with filtration may be substantial, depending on source water quality. Disposable filters are a technically sound solution but their use may become economically unsustainable in the face of difficult or variable quality source water.
詳細を見る

Microflow System Offers 10 Months Payback in Cheese Brine Purification

Salting by immersion in brine is used for many varieties of cheese worldwide. During repeated immersions fat, curd particles and microorganisms from the cheese plus the accumulation of proteins and other components builds up a nutrient-rich environment for the salt resistant microorganisms. Reused brine may then become a reservoir of unwanted microorganisms, such as gas- or pigmentproducing bacteria, yeast and mold, or salt resistant pathogens, cross-contaminating the cheese and impacting their quality. Good control of the brine and the brining operation is essential to ensure consistent daily production. Additionally, brine disposal is coming under increasing focus. High disposal costs or volume limitations in specific areas are driving the demand for greater brine reuse, to generate operating cost savings and minimize the plant environmental footprint.
Salting by immersion in brine is used for many varieties of cheese worldwide. During repeated immersions fat, curd particles and microorganisms from the cheese plus the accumulation of proteins and other components builds up a nutrient-rich environment for the salt resistant microorganisms. Reused brine may then become a reservoir of unwanted microorganisms, such as gas- or pigmentproducing bacteria, yeast and mold, or salt resistant pathogens, cross-contaminating the cheese and impacting their quality. Good control of the brine and the brining operation is essential to ensure consistent daily production. Additionally, brine disposal is coming under increasing focus. High disposal costs or volume limitations in specific areas are driving the demand for greater brine reuse, to generate operating cost savings and minimize the plant environmental footprint.
詳細を見る

Distillers Improve Quality While Reducing Operating Costs with SUPRApak™ Technology

Filtration of spirits can be a challenging task. It is essential to remove contaminants that may cause turbidity while retaining the quality enhancing components in the product. Filter sheets are the traditional method for achieving this delicate balance. Sheets are comprised of a unique matrix of materials that provide an excellent combination of adsorption and depth filtration, making them an ideal solution for turbidity reduction and haze removal in spirits. Filter sheets are available in multiple grades to cover a wide range of applications from filtration of cordials to chill haze reduction in brown spirits to particle removal in white spirits. Additionally many plate and frame filter units have the flexibility to add or remove sheets to suit the batch size, flow rate or the specific product to be filtered.
Filtration of spirits can be a challenging task. It is essential to remove contaminants that may cause turbidity while retaining the quality enhancing components in the product. Filter sheets are the traditional method for achieving this delicate balance. Sheets are comprised of a unique matrix of materials that provide an excellent combination of adsorption and depth filtration, making them an ideal solution for turbidity reduction and haze removal in spirits. Filter sheets are available in multiple grades to cover a wide range of applications from filtration of cordials to chill haze reduction in brown spirits to particle removal in white spirits. Additionally many plate and frame filter units have the flexibility to add or remove sheets to suit the batch size, flow rate or the specific product to be filtered.
詳細を見る

Fermentation Broth Clarification Systems for Food and Feed Ingredients Manufacturing

Producers of bulk food and feed ingredients such as amino acids, organic acids, and vitamins use fermentation as the basis of their production. Today’s modern industrial biotechnology processes use carefully selected and purified microbial cell cultures to produce an ever-increasing variety of ingredients and increase productivity. During fermentation, the microorganisms multiply in industrial bioreactors, utilizing a carbohydrate source for energy. The course of microbial growth progresses under well-controlled conditions of aeration, agitation rate, temperature, pH and other parameters. Fermentation can last from a few hours to several days. The metabolic end products produced by the microorganisms are the basis for many ingredients used today.
Producers of bulk food and feed ingredients such as amino acids, organic acids, and vitamins use fermentation as the basis of their production. Today’s modern industrial biotechnology processes use carefully selected and purified microbial cell cultures to produce an ever-increasing variety of ingredients and increase productivity. During fermentation, the microorganisms multiply in industrial bioreactors, utilizing a carbohydrate source for energy. The course of microbial growth progresses under well-controlled conditions of aeration, agitation rate, temperature, pH and other parameters. Fermentation can last from a few hours to several days. The metabolic end products produced by the microorganisms are the basis for many ingredients used today.
詳細を見る

Cider Producer Maximizes Yield and Increases Capacity with the Oenoflow™ HS System

Filtration is a key operation in modern cider production to deliver visually bright and shelf stable product. Traditionally, cider clarification has been performed with diatomaceous earth or sheet based filtration technologies. However, with more favorable economics, easier operation and lower waste volumes, crossflow filtration systems like Pall’s Oenoflow XL system have become more widely adopted over the past decade.
Filtration is a key operation in modern cider production to deliver visually bright and shelf stable product. Traditionally, cider clarification has been performed with diatomaceous earth or sheet based filtration technologies. However, with more favorable economics, easier operation and lower waste volumes, crossflow filtration systems like Pall’s Oenoflow XL system have become more widely adopted over the past decade.
詳細を見る

TAB Filtration Significantly Improves Ready to Drink Tea Quality and Yield

Ready to drink tea, fruit juices and drinks, carbonated soft drinks, and other beverages are subject to spoilage due to the presence of heatresistant, acidophilic bacterial spores (TAB). The thermoacidophilic spores may originate either from exposure to agricultural raw materials such as in fruit juice production, or from contamination in the beverage ingredients, such as sweeteners, juice and tea concentrates, or flavors, essences, and colors from natural extracts.
Ready to drink tea, fruit juices and drinks, carbonated soft drinks, and other beverages are subject to spoilage due to the presence of heatresistant, acidophilic bacterial spores (TAB). The thermoacidophilic spores may originate either from exposure to agricultural raw materials such as in fruit juice production, or from contamination in the beverage ingredients, such as sweeteners, juice and tea concentrates, or flavors, essences, and colors from natural extracts.
詳細を見る

Cross-flow Lees Filter Experience Delivers Efficiency and Economy at Yalumba

Recovery of wine from lees represents one of the most challenging forms of filtration faced by wineries. The high concentration and variability of the suspended solids limit the suitable filtration technologies, while strict environmental regulations and sustainability programs are increasing pressure to reduce waste volumes. Traditionally, lees filtration is performed with filter aid based systems like rotary vacuum drum (RVD) or chamber press filters. While these systems typically have good volumetric recovery of the wine from the solids, there are some inherent drawbacks that can affect wine quality. The open design allows for oxygen pick-up and the recovered wine often needs further processing. The wine is typically downgraded in value and used in blends instead of added back to the original batch.
Recovery of wine from lees represents one of the most challenging forms of filtration faced by wineries. The high concentration and variability of the suspended solids limit the suitable filtration technologies, while strict environmental regulations and sustainability programs are increasing pressure to reduce waste volumes. Traditionally, lees filtration is performed with filter aid based systems like rotary vacuum drum (RVD) or chamber press filters. While these systems typically have good volumetric recovery of the wine from the solids, there are some inherent drawbacks that can affect wine quality. The open design allows for oxygen pick-up and the recovered wine often needs further processing. The wine is typically downgraded in value and used in blends instead of added back to the original batch.
詳細を見る