小規模ワイナリ向け クロスフローシステム

小規模ワイナリー向けのクロスフローろ過システムがついに誕生しました。今までは大規模な醸造所向けのシステムのみ販売していましたが、生産規模が小さくても導入できるクロスフローろ過システム、エノフローフィットによりクロスフローろ過が身近になりました。

小規模ワイナリーに最適なクロスフローろ過システム

製品名: エノフロー™ フィット

 

説明

エノフローフィットは、小規模ワイナリーでのワインの清澄化とポリッシュフィルター用に特別に設計された、新しいモジュール式クロスフローシステムです。構成要素である「モジュール」は、パズルのピースのように組み合わせることができ、各ワイナリーの作業ニーズに合わせてシステムを構成することができます。

 

エノフローフィット構成要素

大流量・大面積の中空糸型精密ろ過膜を2本使用したステンレス製のシステムがベースのシステムとなります。完全自動化されたユニットには「サイクル」プログラムが搭載されており、オペレーターの操作を最小限に抑えながらシステムの操作や洗浄を行うことができます。ご要望に合わせてシステムのカスタマイズが可能であり、ベースシステムにモジュラービルディングブロックを追加することができます

 

エノフローフィットのメンブレン

エノフローフィットの精密ろ過モジュールは、ポール社の実績ある対称型中空糸膜を採用しています。21.5平方メートルのフィルター面積を持つ大口径の高流量モジュールは、一般的な競合他社の中空糸モジュールに比べて2倍のフィルター面積を持っています。

 

コスト削減のメリット

珪藻土ろ過やシートフィルターをエノフローフィット・クロスフローろ過システムに置き換えることで、ワインメーカーはろ過助剤の使用や廃棄をなくし、ワインのロスを減らし、さらにろ過の安定性を高めることができます。エノフローフィットは新しいモジュール構造を採用しているため、成長中のワイナリーにもさらなるメリットを提供します。

 

  • 予算に合わせてシステムを構成することができます
  • 導入後、システムアップグレードのためにコンポーネントを追加して拡張することが可能です
  • ワイン生産量の増加に対応し、後からモジュールを追加することも可能です

 

 

コンプライアンス

エノフローフィットシステムは、European Pressure Directivesに準拠して製造されており、各システムにはCEマークが付いています。

エノフローモジュールは、食品と接触する製品に関する特定の規制基準への適合性が確認されています。詳細については、ポール社にお問い合わせください。

 

TFF Technology Increases Yield and Reduces Waste Streams

Up to 80% of the extract contained in the surplus yeast that collects at the bottom of tanks after fermentation and maturation can now be recovered rather than disposed of. Beer can be recovered and blended back into the brewing process at a ratio of up to 5% without negatively influencing the beer quality, increasing the yield and reducing the total beer volume needing to be produced. This represents a lower CO2 footprint, reduced water usage, and a lowering of production costs, plus the minimized waste stream reduces disposal costs and ensures a lower level of BOD’s and COD’s are returned back into the environment.
Up to 80% of the extract contained in the surplus yeast that collects at the bottom of tanks after fermentation and maturation can now be recovered rather than disposed of. Beer can be recovered and blended back into the brewing process at a ratio of up to 5% without negatively influencing the beer quality, increasing the yield and reducing the total beer volume needing to be produced. This represents a lower CO2 footprint, reduced water usage, and a lowering of production costs, plus the minimized waste stream reduces disposal costs and ensures a lower level of BOD’s and COD’s are returned back into the environment.
詳細を見る

Craft Brewery Preserves Image and Limits Losses

Although beer is restrictive to bacterial growth due to its low pH, ethanol concentration, and low oxygen content, the presence of certain beer spoilage bacteria including Lactobacillus, Pediococcus, Pectinatus, and Megasphaera can generate off-flavors, turbidity and acidity. Such quality deficiencies render the product unacceptable and often result in high economic losses and negative brand image. Throughout the production process, undesirable microbial contamination must be prevented to achieve the required final beer quality. Such contamination may originate from ingredients (including yeast), air and water utilities coming into contact with the product, and the environment.
Although beer is restrictive to bacterial growth due to its low pH, ethanol concentration, and low oxygen content, the presence of certain beer spoilage bacteria including Lactobacillus, Pediococcus, Pectinatus, and Megasphaera can generate off-flavors, turbidity and acidity. Such quality deficiencies render the product unacceptable and often result in high economic losses and negative brand image. Throughout the production process, undesirable microbial contamination must be prevented to achieve the required final beer quality. Such contamination may originate from ingredients (including yeast), air and water utilities coming into contact with the product, and the environment.
詳細を見る

Pall Aria™ System Rescues Bottled Spring Water Producer from Plant Closure

Spring water is a valuable natural resource, which requires good purification treatment before appearing on grocery store shelves as high purity, visually pleasing bottled product. Filtration is a key process step required to achieve consistently high product quality. The costs associated with filtration may be substantial, depending on source water quality. Disposable filters are a technically sound solution but their use may become economically unsustainable in the face of difficult or variable quality source water.
Spring water is a valuable natural resource, which requires good purification treatment before appearing on grocery store shelves as high purity, visually pleasing bottled product. Filtration is a key process step required to achieve consistently high product quality. The costs associated with filtration may be substantial, depending on source water quality. Disposable filters are a technically sound solution but their use may become economically unsustainable in the face of difficult or variable quality source water.
詳細を見る

Microflow System Offers 10 Months Payback in Cheese Brine Purification

Salting by immersion in brine is used for many varieties of cheese worldwide. During repeated immersions fat, curd particles and microorganisms from the cheese plus the accumulation of proteins and other components builds up a nutrient-rich environment for the salt resistant microorganisms. Reused brine may then become a reservoir of unwanted microorganisms, such as gas- or pigmentproducing bacteria, yeast and mold, or salt resistant pathogens, cross-contaminating the cheese and impacting their quality. Good control of the brine and the brining operation is essential to ensure consistent daily production. Additionally, brine disposal is coming under increasing focus. High disposal costs or volume limitations in specific areas are driving the demand for greater brine reuse, to generate operating cost savings and minimize the plant environmental footprint.
Salting by immersion in brine is used for many varieties of cheese worldwide. During repeated immersions fat, curd particles and microorganisms from the cheese plus the accumulation of proteins and other components builds up a nutrient-rich environment for the salt resistant microorganisms. Reused brine may then become a reservoir of unwanted microorganisms, such as gas- or pigmentproducing bacteria, yeast and mold, or salt resistant pathogens, cross-contaminating the cheese and impacting their quality. Good control of the brine and the brining operation is essential to ensure consistent daily production. Additionally, brine disposal is coming under increasing focus. High disposal costs or volume limitations in specific areas are driving the demand for greater brine reuse, to generate operating cost savings and minimize the plant environmental footprint.
詳細を見る

Distillers Improve Quality While Reducing Operating Costs with SUPRApak™ Technology

Filtration of spirits can be a challenging task. It is essential to remove contaminants that may cause turbidity while retaining the quality enhancing components in the product. Filter sheets are the traditional method for achieving this delicate balance. Sheets are comprised of a unique matrix of materials that provide an excellent combination of adsorption and depth filtration, making them an ideal solution for turbidity reduction and haze removal in spirits. Filter sheets are available in multiple grades to cover a wide range of applications from filtration of cordials to chill haze reduction in brown spirits to particle removal in white spirits. Additionally many plate and frame filter units have the flexibility to add or remove sheets to suit the batch size, flow rate or the specific product to be filtered.
Filtration of spirits can be a challenging task. It is essential to remove contaminants that may cause turbidity while retaining the quality enhancing components in the product. Filter sheets are the traditional method for achieving this delicate balance. Sheets are comprised of a unique matrix of materials that provide an excellent combination of adsorption and depth filtration, making them an ideal solution for turbidity reduction and haze removal in spirits. Filter sheets are available in multiple grades to cover a wide range of applications from filtration of cordials to chill haze reduction in brown spirits to particle removal in white spirits. Additionally many plate and frame filter units have the flexibility to add or remove sheets to suit the batch size, flow rate or the specific product to be filtered.
詳細を見る

Fermentation Broth Clarification Systems for Food and Feed Ingredients Manufacturing

Producers of bulk food and feed ingredients such as amino acids, organic acids, and vitamins use fermentation as the basis of their production. Today’s modern industrial biotechnology processes use carefully selected and purified microbial cell cultures to produce an ever-increasing variety of ingredients and increase productivity. During fermentation, the microorganisms multiply in industrial bioreactors, utilizing a carbohydrate source for energy. The course of microbial growth progresses under well-controlled conditions of aeration, agitation rate, temperature, pH and other parameters. Fermentation can last from a few hours to several days. The metabolic end products produced by the microorganisms are the basis for many ingredients used today.
Producers of bulk food and feed ingredients such as amino acids, organic acids, and vitamins use fermentation as the basis of their production. Today’s modern industrial biotechnology processes use carefully selected and purified microbial cell cultures to produce an ever-increasing variety of ingredients and increase productivity. During fermentation, the microorganisms multiply in industrial bioreactors, utilizing a carbohydrate source for energy. The course of microbial growth progresses under well-controlled conditions of aeration, agitation rate, temperature, pH and other parameters. Fermentation can last from a few hours to several days. The metabolic end products produced by the microorganisms are the basis for many ingredients used today.
詳細を見る

Cider Producer Maximizes Yield and Increases Capacity with the Oenoflow™ HS System

Filtration is a key operation in modern cider production to deliver visually bright and shelf stable product. Traditionally, cider clarification has been performed with diatomaceous earth or sheet based filtration technologies. However, with more favorable economics, easier operation and lower waste volumes, crossflow filtration systems like Pall’s Oenoflow XL system have become more widely adopted over the past decade.
Filtration is a key operation in modern cider production to deliver visually bright and shelf stable product. Traditionally, cider clarification has been performed with diatomaceous earth or sheet based filtration technologies. However, with more favorable economics, easier operation and lower waste volumes, crossflow filtration systems like Pall’s Oenoflow XL system have become more widely adopted over the past decade.
詳細を見る

TAB Filtration Significantly Improves Ready to Drink Tea Quality and Yield

Ready to drink tea, fruit juices and drinks, carbonated soft drinks, and other beverages are subject to spoilage due to the presence of heatresistant, acidophilic bacterial spores (TAB). The thermoacidophilic spores may originate either from exposure to agricultural raw materials such as in fruit juice production, or from contamination in the beverage ingredients, such as sweeteners, juice and tea concentrates, or flavors, essences, and colors from natural extracts.
Ready to drink tea, fruit juices and drinks, carbonated soft drinks, and other beverages are subject to spoilage due to the presence of heatresistant, acidophilic bacterial spores (TAB). The thermoacidophilic spores may originate either from exposure to agricultural raw materials such as in fruit juice production, or from contamination in the beverage ingredients, such as sweeteners, juice and tea concentrates, or flavors, essences, and colors from natural extracts.
詳細を見る

Cross-flow Lees Filter Experience Delivers Efficiency and Economy at Yalumba

Recovery of wine from lees represents one of the most challenging forms of filtration faced by wineries. The high concentration and variability of the suspended solids limit the suitable filtration technologies, while strict environmental regulations and sustainability programs are increasing pressure to reduce waste volumes. Traditionally, lees filtration is performed with filter aid based systems like rotary vacuum drum (RVD) or chamber press filters. While these systems typically have good volumetric recovery of the wine from the solids, there are some inherent drawbacks that can affect wine quality. The open design allows for oxygen pick-up and the recovered wine often needs further processing. The wine is typically downgraded in value and used in blends instead of added back to the original batch.
Recovery of wine from lees represents one of the most challenging forms of filtration faced by wineries. The high concentration and variability of the suspended solids limit the suitable filtration technologies, while strict environmental regulations and sustainability programs are increasing pressure to reduce waste volumes. Traditionally, lees filtration is performed with filter aid based systems like rotary vacuum drum (RVD) or chamber press filters. While these systems typically have good volumetric recovery of the wine from the solids, there are some inherent drawbacks that can affect wine quality. The open design allows for oxygen pick-up and the recovered wine often needs further processing. The wine is typically downgraded in value and used in blends instead of added back to the original batch.
詳細を見る